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Abstract

The problem of minimizing a sum of Euclidean norms dates from
the 17th century and may be the earliest example of duality in the
mathematical programming literature. This nonsmooth optimization
problem arises in many different kinds of modern scientific applications.
We derive a primal-dual interior-point algorithm for the problem, by
applying Newton’s method directly to a system of nonlinear equations
characterizing primal and dual feasibility and a perturbed complemen-
tarity condition. The main work at each step consists of solving a
system of linear equations (the Schur complement equations). This
Schur complement matrix is not symmetric, unlike in linear program-
ming. We incorporate a Mehrotra-type predictor-corrector scheme and
present some experimental results comparing several variations of the
algorithm, including, as one option, explicit symmetrization of the
Schur complement with a skew corrector term. We also present results
obtained from a code implemented to solve large sparse problems, using
a symmetrized Schur complement. This has been applied to problems
arising in plastic collapse analysis, with hundreds of thousands of vari-
ables and millions of nonzeros in the constraint matrix. The algorithm
typically finds accurate solutions in less than 50 iterations and deter-
mines physically meaningful solutions previously unobtainable.
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1 Introduction

A problem which arises in many applications is to minimize a sum of Eu-
clidean vector norms, i.e.

n
D: min{ZHZiH cyeR™; z; eR ATy + 2, = ¢, z':l,...,n}
i=1

where A; € R™*4 ¢; € R4, i = 1,...,n, are given. In most applications
d = 2 or d = 3 so that the terms in the sum are distances in a two or
three dimensional Euclidean space. If d = 1, the problem D is equivalent
to a linear program (LP). The minimization objective is convex but not
differentiable at any point where some z; = 0.

The sum of distances problem, D, has a long and interesting history. The
special case d = m = 2, n = 3, A; = I, was studied by Fermat in the 17th
century. This amounts to finding the point in 2 which minimizes the sum
of distances from it to three given points. In the early 19th century it was
realized that this particular convex optimization problem has a natural dual
maximization formulation. Kuhn [Kuh91] regards this as the first instance
of duality in the mathematical programming literature. Further history is
given in [Kuh67].

Duality theory for D is easily described using min-max theory. Let
x; € R4 i =1,...,n. For consistency with standard notation for LP, we
refer to x; as the primal variables and y, z; as the dual variables, even
though in our experience it is usually the dual problem D which explicitly
arises in applications. We have
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n
min Z llzill = min max x! z;
Aly+zi=ci ;5 Aly+zi=c; |lwill<t =

n
max min Z a:?zi
llzl|<1 ATy+zi=e; ;4

n n
= max min (Z ciTwi —yT Z Aiazi>
=1

lzill<t Y =
n n
= max {Z cle; @ ||z <1, ZAz'-’Di = O}.
i=1 i=1

The first equality follows from Cauchy-Schwartz, the second from min-max
theory [Roc70, Cor. 37.3.2], the third trivially, and the fourth because if

1 Ajx; is not zero, the minimized value would be —co. Therefore, the
dual of D is the primal problem

n n
P: max {ZCzT.’BZ s €RY x| <1, i=1,...,n; ZAimi:O}.
i=1 i=1

This result is an easy generalization of the duality theory in [Kuh67], but
may not have explicitly appeared in the literature until [And96b].

Although the duality theory has been known in its simplest form for
nearly two centuries, it was not understood until relatively recently how
to exploit duality in algorithms for minimizing D. Iteratively reweighted
least squares (Weiszfeld’s method [Wei37]) has long been used as a robust
though slowly converging method to solve D. Another well-known approach
is to replace the terms ||z;|| in the objective by the differentiable quantity
V||zil|? + 12, where p is a fixed positive number. This method is also robust
but converges arbitrarily slowly as y — 0. Neither of these algorithms use
any aspect of duality. In both cases, the reason for the slow convergence is
that, in most interesting applications, some of the norms in the objective D
have zero as their optimal value.

Calamai and Conn[CC80, CC87] and Overton[Ove83] solved D using
Newton methods combined with an active set approach to determine which
norms ||z;|| are zero at an optimal solution. These methods were the first to
exploit the duality structure of the problem, as they explicitly compute both
primal and dual solutions. However, Newton’s method was derived in the
Yy, z space only, with the & variables computed by least-squares estimates.
The methods of Calamai and Conn and Overton are quite efficient if not



many norms | z;|| are zero. However, if this number is large, the number of
iterations is typically also large, because the active set of zero norms must
be updated at every step.

Andersen [And96b] gave a method for solving D which is based on a
primal interior-point method for LP. In this method the terms ||z;|| are re-
placed by /||z;||? + p?, but the quantity u is treated as an extra variable,
whose value is determined by duality estimates. Using this method, Ander-
sen was the first to be able to solve D rapidly and accurately even when
the number of variables is large and many norms || z;|| are zero at a solution
point. In [AC98] it was demonstrated how the linearly constrained problem
can be reduced to the unconstrained case using an exact /; penalty function,
while still preserving sparsity structure.

In this paper we present a primal-dual interior-point method for solv-
ing P and D. The basic algorithm is easy to motivate and implement.
The number of iterations required is substantially fewer than for the primal
interior-point method used by Andersen [And96b]. This is consistent with
general experience with primal-dual versus primal interior-point methods
for LP [Wri97].

The sum of norms problem is a special case of quadratically constrained
quadratic programming (QCQP), also known as optimization over the quad-
ratic cone. Nesterov and Todd [NT98a, NT98b] give a theoretical discussion
of algorithms for optimization over homogeneous self-dual cones, including
the quadratic cone. See also Adler and Alizadeh [AA95] for another primal-
dual algorithmic approach to QCQP. Our view is that the sum of norms
problem is sufficiently important that a specialized approach is justified.
Also taking this view, Xue and Ye [XY97] give a complexity analysis of the
sum of norms problem, using an interior-point method and exploiting the
general theory given in [NT98a, NT98b].

Our primal-dual algorithm is derived in the next section, applying New-
ton’s method to three conditions: primal and dual feasibility and comple-
mentarity. A key point is the derivation of the appropriate complementarity
condition. The main work at each step consists of solving a system of lin-
ear equations (the Schur complement equations). This Schur complement
matrix is not symmetric, unlike its counterpart in linear programming.

Section 3 discusses a Mehrotra predictor-corrector enhancement to the
algorithm and considers symmetrizing the Schur complement equations, in-
cluding a compensating skew corrector term. Section 4 presents experimen-
tal results for some Steiner tree test problems.

Section 5 discusses a large-scale implementation using a symmetrized
Schur complement. This has been used to solve applied problems arising in



plastic collapse analysis with hundreds of thousands of variables and millions
of nonzeros in the constraint matrix. The algorithm typically finds accurate
solutions in less than 50 iterations and determines physically meaningful
solutions that were considered unobtainable until now.

In fact, problem D arises in many applications. Alpert, Chan, Kahng,
Markov and Mulet [ACK™98] have recently applied a variant of our algo-
rithm presented in this paper to the placement of circuits in VLSI design.
Chan, Golub and Mulet [CGM96] applied a nonlinear version of the algo-
rithm to some applications in image reconstruction. Byrnes and Bright [BB]
used iteratively reweighted least-squares to solve trajectory optimization
problems in space exploration. In fact, this method (Weiszfeld’s method)
has long been used at the Jet Propulsion Laboratory as a basic workhorse
to solve problems of the form D that arise in spacecraft missions such as the
Galileo and Pioneer “fly-by’s” of the outer planets. Strang [Str79] consid-
ered an isoparametric design problem to which Overton [Ove84] applied a
version of his algorithm mentioned above. Parks [Par91] has applied related
methods to solve minimal surface (soap bubble) problems. Alexander and
Maddocks [AM93] used the method of [Ove83] to solve friction problems
arising in robotics. A key similarity in all these applications is that some,
and perhaps many, of the norms in the sum to be minimized can expected
to have the value zero at an optimal solution.

We believe there is great opportunity to apply the primal-dual method
given in this paper to these and many other interesting applications.

Notation. Let I; denote the d x d identity matrix. Let
T Z1 1
z=| : |eRM z=| : |eRP c=| : | eR¥r
Ln Zn Cn
A=[ A - A, ]ermn,
The primal feasible region is given by
X={zechR™: Az =0, [a) <1, i=1,..,n} (1)

and the dual feasible region is

yz{(y,z)eﬂ?mxﬂ?d”:ATyan:c}. 2)



Consequently, we may rewrite D as

D: min{i”zin : (y,z)ey}
i=1

and P as
P: max {cT:I: : :UEX}.

2 Complementarity and Newton’s Method

Suppose & € X and (y,z) € ) are respectively primal and dual feasible.
Then the duality gap, i.e. difference between the primal and dual objective
functions, is

n n n
>Nzl = Y elmi =3 (l=ill - 27=:) > 0. 3)
i=1 i=1

i=1

The duality gap must be zero at an optimal solution. It is zero if and
only if, for each i = 1,...,n, either ||z;|| is zero or &; = 2z;/||z;||. This
complementarity condition can be conveniently expressed as

zi —||zi||l®z; =0, i=1,...,n. (4)

It follows from the complementarity condition that for each 4, either z; = 0
or ||z;|] = 1; we say that strict complementarity holds if, for each %, only one
of these two conditions holds. It may happen that no strictly complementary
solution exists, unlike in LP.

Primal-dual interior-point methods are based on Newton’s method ap-
plied to three sets of equations: primal feasibility, dual feasibility, and an
appropriate complementarity /centering condition. The feasibility equations
are respectively

Az =0 (5)

and
ATy +z=c (6)

We assume from now on that the m by dn matrix A has full rank. We also
assume that m < dn, since otherwise P and D are solved by x =0, z = 0.

The primal and dual feasibility equations consist of m + dn equations
in the m + 2dn scalar variables represented by y and x, z. To make this a
square system we need another dn equations, which are available in the form



of the complementarity condition (4). This condition is not differentiable if
||z;]| is zero, but it may be replaced by the centering condition

1
zi— (lzil? +#?) =0, i=1,...n )

where p > 0.

The following theorem is from [And96b], showing that the centering
condition (7) is in fact the complementarity condition for the following pair
of smooth optimization problems:

D, : min {zn: (||zi||2+ll2)%: (y,2) Ey}

=1

n
P,: max {ch+uZ(1—||mi||2)%: :I:EX}.

i=1

Theorem 1 The problems D, and P, are a primal-dual pair. Specifically,
D,, has the solution (y(u),z(u)) and P, has the solution x(u), all satisfying

(5), (6) and (7).

Proof: The proof is a simple modification of the proof (given in Section 1)
that P and D are a primal-dual pair. See [And96b] for details. O

This theorem shows that introducing the centering parameter p in the
complementarity conditions for the original pair of problems is equivalent to
smoothing the norms in D and introducing a cost into P which moves the
primal solution away from its boundary. The solutions (x(u), y(u), z(p)) of
P,, D, for p > 0, define a sort of central path for P, D, though not one
derived from a logarithmic barrier function and therefore not centered in
the usual sense.

Let us write the centering condition (7) as

1
O(u,z)x — 2z =0, where O(u,z) = Diag ((||2:Z||2 + u2) ? Id) . (8)

Collecting (6), (5) and (8) together, we have the nonlinear system of equa-
tions

ATyt+z—c
Gu(z,y,z) = Az =0, (9)
O(p,z)x — =



whose solution is (z(u),y (1), 2(p)). Newton’s method applied to G, at a
given point (x,y,z) gives the following linear system defining updates to
the variables:

o AT 1,4, Az T4
A 0 0 Ay | = rp (10)
E, 0 -F, Az T
where
rq=c— ATy — 2z, rp=—Azx, r.=z-E,zx, (11)
1
E, = Diag (w!'I;), F, = Diag (Id — —umzz;‘r> , (12)
W
and )
wl = (|lzl® + 1) (13)
) ¢ H '

The equation r4 = 0 is maintained exactly at each step, by always defining
z = ¢ — ATy. Although rp can be set to zero initially by setting the first
iterate & = 0 or setting @ to a null vector of A, we do not assume this, since
primal feasibility cannot be maintained exactly in the presence of rounding
errors.

Eliminating Az, we have

—1 T -1
e 4[] ]

Defining H,, = E;lFu, and using the definition of 7. in (11), we find after
one more elimination step that

AH,A"Ay = AE, 'z (15)

and
Az = E;l (F,Az + 1), (16)

where (immediately from dual feasibility)
Az = —ATAy. (17)

The operations of multiplying vectors by F',, and E;l are trivial since F'j, is
block diagonal and E, is positive diagonal. Notice the explicit dependence
of E,, and F,, on the centering parameter y, in contrast to the situation in
LP, where the corresponding diagonal matrices depend only on the current



variables. This is a consequence of the more complicated nature of the
complementarity condition (4).

The main cost of this process is forming and factoring the Schur comple-
ment AH MAT. Except in the trivial case d = 1, the block diagonal matrix
H , is not generally symmetric, since F';, is not. This presents difficulties
for large sparse problems, where it is highly desirable to use sparse Cholesky
techniques which apply only to symmetric, positive definite systems. Sparse
LU factorization techniques for nonsymmetric linear systems are more costly
since they require pivoting for stability and are therefore not able to exploit
sparsity as effectively as sparse Cholesky methods.

However, note that F, is positive definite (in the sense that vI F v > 0
for all v # 0) as long as @ € X, and therefore so are H, and AH”AT
(since E, and F, commute). Furthermore, it follows from equation (7)
that for (z,y,2) = (x(u),y(u), z(1)) (see Theorem 1), the matrix F, and
therefore also H,, and AH MAT are symmetric for all g > 0. Consequently,
when defined sufficiently close to the “central path”, AH NAT is nearly
symmetric. One of the issues we shall discuss in the next section is the
effect of symmetrizing H, by defining it to be %E;l(Fu + FZ) instead of
E;'F,.

As p — 0, for each 1, either z;(u) or x;(p) — zi(p)/||zi(p)|| converges to
zero. In the the latter case, the limit of the ith block of the corresponding
F, is singular, while in the former case the limit of the ith block of the
corresponding E, is zero.

We now discuss how to update the iterates x, y and z after Az, Ay and
Az are computed. We start by observing that Az is a descent direction for
the smoothed dual objective function in D,: the gradient of this function
with respect to z is easily seen to be E;lz. Using (17) and (15), we have

(Az)T E;lz = —(Ay)TAEljlz
= —(Ay)" AH, AT Ay
< 0
(unless z = 0), since the symmetric part of AH “AT is positive definite.

Consequently, it is natural to update y and z by using a line search on the
smoothed dual function in D,,. We therefore update the dual variables by

Dual Line Search Rule

g=y+pAy, z=z+pAz, (18)



where
n

1
3~ i ; Azi|? 2)? 19
B arg it 2 (llzi + BAzZ|* + 1?) (19)

The same steplength must be used for y and z to maintain dual feasibility.
Of course, the univariate minimization problem need not be solved exactly.

The direction Az is not necessarily an ascent direction for the penalized
primal objective function in P,;, so a line search is not appropriate to update
the primal iterate . We consider two possibilities:

Primal Scaling Rule
z=7(z+ Ax) (20)

where
y=max{y: yleit+Az| <1 i=1,...,n}. (21)

The scaling rule is a trivial computation.

Primal Steplength Rule The step to the boundary is given by
Omax = max{a: ||z;+alz;|| <1,i=1,...,n} = maxa,
3

where «; is the positive root of a quadratic equation:

—Azlz; + \/||A:ci||2 (1= llil”) + (22T ;)”

o; = ||A$z||2 , t=1...,n.
We choose 0 < 7 < 1 and define
Q = TQmax- (22)
Then the steplength rule is defined by
Z =z +min(l, a)Az. (23)

Both rules preserve primal feasibility in exact arithmetic. For the step-
length rule, conventional experience with primal-dual interior-point methods
dictates a choice of 7 less than 1, but not much less, for example, 7 = .99 or
7 =.999. For sums of norms, however, we found that 7 = 1 also works quite
well. This allows iterates x to actually reach the boundary of the feasible
region, but the matrix F', still cannot be singular as long as 1 > 0. Increased
ill-conditioning of the linear systems which are solved as convergence takes

10



place is a standard feature of interior-point methods and generally does not
cause great difficulties except when the iterates are nearly optimal. The
reason we do not allow 7 = 1 is that rounding errors may then cause the
updated x to lie just outside the feasible region.

The scaling rule always places « exactly on the boundary of the feasible
region. This is not appropriate if the solution & has all component norms
lz;|| < 1, but this is a trivial case since then the dual solution must be zero
by complementarity. As far as we know, the scaling rule does not have an
analogy in standard interior-point implementations: such a rule is possible
only when the primal equality constraints are homogeneous as they are here.

Equations (15), (16), (17) and the updating rules just described define
the basic ingredients of a primal-dual interior-point method for solving P
and D. To complete the description of the algorithm we must define a rule
for updating the parameter u: for this we introduce a predictor-corrector
method.

3 Mehrotra’s Predictor-Corrector Method and a
Symmetrized Algorithm with a Skew Correction
Term

Mehrotra’s predictor-corrector method is a standard tool in primal-dual
interior-point software for LP. The basic idea is to first compute a predic-
tor step defined by first-order approximations to the optimality conditions
(i.e. Newton’s method), and to follow this with a corrector step which also
takes second-order terms into account. A key point is that both predictor
and corrector use the same matrix factorization; only the right-hand sides
of the linear equations defining the steps differ. Another key component is a
technique for estimating the centering parameter . Mehrotra’s method was
originally given in [Meh92]; an excellent discussion may be found in [Wri97,
Chap. 10].

We now discuss how to adapt Mehrotra’s method to our problem. Let
us replace z, y and z in the centering condition (8) by  + Az, y + Ay and
z + Az respectively, obtaining, for i = 1,...,n,

M

zi +Az; — (||z,~ + Azi||2 + NQ) (z; + Az;) =0,

ie.
TAz. Az |2
zi+ Az — Wl (1-|-2ZZ i H(wil)!
i

(w;)?

1
3
) (x; + Azx;) = 0,

11



which gives

zI'Az;
(w;)?
Moving first-order terms to the left-hand side, constant and second-order

terms to the right-hand side, neglecting higher than second-order terms and
changing the sign of the equation we obtain

1Azi]* (2] Az)
20wi)? 2wp)?

2

z,'-I—Az,-—wé‘(l-l- + +"'>(wi+sz’)=0.

2
ZiTA“Zz'Awi_ [ Az o+ (2] Azi)?

w P 2(wl")3

(Ey,Az — F, Az), = (rc); — x; (24)
for i = 1,...,n. The idea, then, is to compute the predictor steps Az, Ay
and Az from equations (15)-(17), and then use these to define the second-
order terms which are included in the right-hand side of the linear system
solved to obtain the corrector step, using the factorization of AH NAT a
second time.

As noted above, a key component of Mehrotra’s method is to exploit
the result of the predictor step to define a heuristic value for the centering
parameter u to be used in the computation of the corrector step. This is
provided by
(gap(z + Az, z + Az))?

n (gap(z, 2))*

p= ’ (25)

where
n

gap(,2) = (|lzil — =] =) . (26)
i=1
This is a natural generalization of Mehrotra’s formula for LP. The value j
may be substituted for p in all the terms on the right-hand side of (24),
including the second-order terms as well as the constant term, giving

i, 1Bul, | (L Ax)

(3
w! 2wt 2(wl')3

hgl) =Z;— wf.’ni - L, (27)

where

(NI

wf = (2l + )

It is not practical to substitute i for p on the left-hand side of (24),

since the factorization of H, has already been computed using the previous

value for p. Consequently, we also add to the right-hand side of (24) further
corrector terms of the form

hZ(Q) — (wf - wf) Ax; + (iu — %) (ziTAzi) z;. (29)

(28)



As noted in the previous section, the nonsymmetry of H, is a major dis-
advantage for large sparse problems. We therefore consider here the idea
of explicitly symmetrizing H ,, defining it to be %E;l(Fu + Fg) instead
of E;lFM. This suggests subtracting a skew correction term %E;l(FM —
FZ)Az from the right hand side, i.e. adding terms

1
A = 2T ((AziTwi)zi - (AZiTZi)“’i) (30)

0 (24). Note the use of w!, not w , in the denominator. Putting all this
together, the corrector step is deﬁned by

E,Ax—F, Az =, (31)

where the ith block of the “corrected centering” residual is

A +
(r); = {

h{ if H,=E,'F,
h) +h

(
)
2 . _ (32)
D+n® it H, =B (F,+FY)
using (27), (29) and (30).

Substituting ¢ for 7. in (14), we therefore compute the corrector steps
from

AH, ANy = A (B, 'ri+ o) (33)

and
Az = E;' (F,Az + 1) (34)

with Az given by (17).

Note that by analogy with standard practice in LP, it might seem ap-
propriate to modify the right-hand side 7. used by the predictor step by
substituting 0 for p in its definition.! In practice, whether or not this is
done seems to have little effect, but one reason not to make this choice is
that then the dual predictor step is no longer guaranteed to be a descent
direction for the smoothed objective function in D,. There is no guarantee
that the dual corrector step is a descent direction for either this function or
the corresponding function defined using /i instead of y, although it usually
is. If it is a descent direction for the latter function, we update the iterates
as before, using [i instead of p in the objective function in the dual line
search. Otherwise, we abandon both primal and dual corrector steps and
use the predictor steps instead.

'In fact, this was done in the experiments reported in Section 5.

13



We now summarize the algorithm. We initialize it with & = 0, y set to
the minimizer of ||c — ATy|| and z = ¢ — ATy. Assume that an initial value
of u > 0 is given, as well as a termination tolerance e.

Predictor-Corrector Algorithm for Minimizing a Sum of Norms

1.

2.

10.

Define w!', E,, and F, by (12)-(13).

Define H,, by either E;lFu or %E;l(Fu + FZ) and find either the
LU or Cholesky factorization, respectively, of AH “AT. In the former
case, quit if the LU factorization generates a zero pivot. In the lat-
ter case, either quit if the Cholesky factorization fails, or modify the
factorization, effectively redefining H, by a nearby positive definite
approximation.

Determine the predictor steps Ay, Az and Az from (15), (17) and
(16).

Define & from the primal scaling rule ((20) and (21)) or the primal
steplength rule ((22) and (23)), and ¢, 2 by the dual line search rule
((18) and (19)). Quit if the dual line search fails to achieve a reduction
in the smoothed dual.

Define i by (25) and wf by (28).
Determine the corrector steps Ay, Az and Az from (33), (17), (34).

If (Eﬁlz)TAz < 0, redetermine &, gy and Z using the primal scaling
or steplength rule with j instead of y, and the dual line search rule
with i instead of u; quit if the dual line search rule fails to achieve a
reduction in the smoothed dual objective.

Replace @, y, z and p by &, gy, Z and [ respectively.

If |Az|| > gap(z, z), quit. (This cannot happen in exact arithmetic
and indicates that rounding errors will dominate any further compu-
tation.)

If gap(z, 2) < eand ||c— ATy —z| +| Az| < ¢, quit; otherwise repeat.

There are several ways the algorithm might terminate when rounding
errors prevent further progress: breakdown of the factorization, failure in
the line search, or growth in the primal infeasibility ||Az| with respect to
the duality gap measure gap(x, z). The occurrence of any of these conditions

14



essentially indicates that the convergence tolerance € is set too small; in any
case, when they occur, the current or previous approximation is generally
quite accurate.

4 Experiments on Small Problems

We now report some numerical results for this algorithm, comparing the
symmetrized and nonsymmetrized versions and other algorithmic options
described above. These results were obtained using a Matlab implementa-
tion run on a set of small topologically-constrained Steiner tree test problems
(for more details, see [DO98]). The sparsity in the data is determined by
the tree structure and its topological constraint, but subject to these qual-
ifications, the data are generated randomly. Each table shows a summary
of results from many runs with different random data on the same problem
class. Sparsity was not exploited. In all cases d = 2. The dual line search
was performed using the Matlab fmin function with its default tolerance.
The machine used was a Sparc Ultra with IEEE double precision arithmetic.

The tables show, for various cases, the number of iterations, the final
values of gap(z, z) (defined in (26)) and the infeasibility norm sum || Az|| +
|c — ATy — z||, each as medians over a set of randomly generated problems
in a given class. The termination tolerance ¢ was set to 1010,

In Tables 1 and 2, we consider a class of Steiner tree problems with
n = 50, m = 62, for which strict complementarity holds at the solution, and
for which the median number of indices for which ||z;|| = 0 at the optimal
solution is 15. We compare the nonsymmetric and symmetrized variants
of the algorithm (H, = E;'F,, and H, = $E,'(F, + F|,) respectively),
with two choices for updating the primal variable: the Scaling Rule and the
Steplength Rule with 7 = 0.999. All variants used the Dual Line Search
Rule. For the symmetrized algorithm, we tested both a version which quits
if the Cholesky factorization of H, fails, and one that modifies the factor-
ization and continues iterating: the latter is standard practice in LP [Wri97,
p.219]. We also tested a variant of the symmetrized version which omits
the skew correction hg?’). Finally, we also tested the effect of omitting the
correction h§2), but this had essentially no effect in any case.

Table 1 shows the results for the Primal Scaling Rule and Table 2 shows
the results using the Primal Steplength Rule. The notations “skew corr” and
“mod Chol” refer to the use of the skew correction term and the modified
Cholesky factorization respectively.

The results clearly confirm three remarkable properties of primal-dual

15



Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 8 le — 12 le — 12
Symmetrized 8 le — 06 6e — 13
Symmetrized, skew corr 7 le — 08 Te — 13
Symmetrized, mod Chol 15 e — 11 le — 12
Symmetrized, skew corr, mod Chol 9 2e — 11 4e — 12

Table 1: Summary of Results for the Scaling Rule

Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 9 4e — 12 6e — 13
Symmetrized 11 8e — 08 2e —13
Symmetrized, skew corr 9 4e — 09 le — 14
Symmetrized, mod Chol 15 4e — 11 8e — 13
Symmetrized, skew corr, mod Chol 10 le—11 4e — 13

Table 2: Summary of Results for the Steplength Rule

predictor-corrector algorithms now well known for linear programming:
e Robust convergence to an optimal solution in all cases tested

e Rapid local convergence so a consistently small number of iterations
is required despite the demand for high accuracy

e Highly accurate solutions achieved despite the extremely ill-condi-
tioned linear systems being solved towards the end of the solution
process

We now comment in more detail on the results in Tables 1 and 2. First,
notice the high accuracy achieved by the nonsymmetric version of the algo-
rithm; the symmetrized version without the modified Cholesky factorization
cannot reach the same level of accuracy. With modified Cholesky, high ac-
curacy is achievable, but more iterations are required. The inclusion of the
skew correction term h§3) substantially improves the performance of the
symmetrized version of the algorithm whether or not the Cholesky factor-
ization is modified.

For both the nonsymmetric and symmetrized versions the Primal Scaling
Rule has a slightly lower iteration count than the Primal Steplength Rule,
apparently because this version of the algorithm has a somewhat faster local
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Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 7 2¢e — 13 Te — 15
Symmetrized 16 6e — 11 Te—15
Symmetrized, skew corr 10 2e — 11 8e — 15
Symmetrized, mod Chol 16 6e — 11 Te—15
Symmetrized, skew corr, mod Chol 10 2e — 11 8e — 15

Table 3: Results for the Scaling Rule on the 20 Chung-Graham ladder prob-

lems with strictly complementary solutions

Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 9 2e — 12 Te — 15
Symmetrized 16 6e — 11 8e — 15
Symmetrized, skew corr 10 Te — 12 8e — 15
Symmetrized, mod Chol 16 6e — 11 8e — 15
Symmetrized, skew corr, mod Chol 10 Te — 12 8e — 15

Table 4: Results for the Steplength Rule on the 20 Chung-Graham ladder
problems with strictly complementary solutions

convergence rate. However, we note that the Scaling rule has the significant
disadvantage that it is not applicable if nonhomogeneous linear constraints
are added to the problem.

In Tables 3 through 6 we display results for a different class of topologi-
cally constrained Steiner tree examples, based on the Chung-Graham ladder
problem (see [DO98]). For these examples, n = 85, m = 84, and the me-
dian number of indices for which ||z;|| equals 0 at the optimal solution is 10.
For most of these problems, no strictly complementary (SC) solution exists.
(Recall from Section 2 that a solution is said to be strictly complementary
if, for each i, exactly one of the conditions ||z;|| = 0 and ||z;|| = 1 holds.)

Tables 3 and 4 show results for the 20 cases out of 200 generated where
an SC solution is found (using the Primal Scaling and Primal Steplength
Rules respectively), while Tables 5 and 6 show results for the other 180 cases
where no SC solution is found, presumably because such a solution does not
exist. The algorithm achieves the same accuracy (by the duality gap and
feasibility measures) on the SC and non-SC problems, but the iteration
count is markedly higher in the non-SC case, and the rate of convergence of
the algorithm was observed to be slower in the non-SC case. For the non-
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Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 14 de —11 8e —15
Symmetrized 16 e — 11 8e —15
Symmetrized, skew corr 14 4e — 11 8e — 15
Symmetrized, mod Chol 16 e — 11 8e —15
Symmetrized, skew corr, mod Chol 14 4e — 11 8e — 15

Table 5: Results for the Scaling Rule on the 180 Chung-Graham ladder

problems with NO strictly complementary solution

Version iter gap infeas
(median) | (median) | (median)

Not symmetrized 16 3e—11 8e — 15
Symmetrized 22 5e — 11 8e — 15
Symmetrized, skew corr 17 3e—11 8e — 15
Symmetrized, mod Chol 22 be — 11 8e — 15
Symmetrized, skew corr, mod Chol 17 3e—11 8e — 15

Table 6: Results for the Steplength Rule on the 180 Chung-Graham ladder
problems with NO strictly complementary solution

SC problems, the residuals | z;|| are not reduced nearly as close to zero for
indices ¢ for which SC does not hold. The reason for this is that the duality
gap tolerance requires the products z7 (z;/||z;|| — ;) to be small and both
factors in the product for such an index 7 converge to zero as the solution is
approached.

For these problems, the modified Cholesky factorization is not needed:
the results are identical whether or not it is used.

On the basis of the experiments reported in this section, we recommend
the symmetrized version of the algorithm with the skew correction term
and the modified Cholesky factorization, using the Dual Line Search and
either the Primal Scaling or the Primal Steplength Rule. The choice of the
symmetrized version is based on the substantial advantage of being able to
use the Cholesky factorization instead of the LU factorization.
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5 Large Sparse Problems arising in Plastic Collapse
Analysis

A variant of the algorithm described above has been used to solve some chal-
lenging large sparse problems arising in plastic collapse analysis. We used
a symmetrized version of the algorithm, with H, = %E;l(Fu + FZ), SO
that the Schur complement A H MAT can be factored by Cholesky decompo-
sition, modified to ensure positive definiteness as discussed earlier. This is
the primary cost of the algorithm. Details of this and other numerical linear
algebra issues are available in [AA97], [AY97] and [And96a]. The primal
steplength rule was used, with 7 = 0.99 in equation (22).

This sparse implementation was developed over several years with large-
scale applications in mind. There are two primary differences from the
algorithm discussed in Section 3. The first is that a different generaliza-
tion of Mehrotra’s method was used, based on differentiating a form of the
centering condition which incorporates the symmetrization of F';, directly,
and therefore does not require a skew correction term. The second is that
individual centering parameters were used instead of one parameter, namely

ii, if 0.25 < (1—[1&]?)
fi=9 (- l@l?) 77, i < (1-1a?) <025
Vi it (1 &) <u

for + = 1,...,n. This modification was found to give significant improve-
ments in performance for the large-scale problems.

The first three classes of test problems are taken from [And96b], where
a primal barrier method was used. We are unaware of any other published
results for large sparse problems of the form (D). These test problems are
finite dimensional discretizations of collapse problems in rigid plasticity. The
discretization step and the physical interpretation of the results can be found
in [Chr96] and in [ACO98|]. The discrete optimization problems are the same
as in [And96b]. The m by dn matrix A is a typical finite element matrix
which in plastic analysis is not square since the equilibrium equation for the
continuum is under-determined. As earlier, H, is block diagonal with block
size d X d. In the cases reported here d is either 2 or 3. The runs were made
on the same Convex 3240 vector machine (using IEEE-compatible double
precision) as in [And96b] so comparisons of accuracy and CPU time are
meaningful.

In the tables, n and m specify the problem dimensions while |A|, |AH , AT |
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and |L| respectively denote the number of nonzeros in A, the upper triangle
of AH MAT and the Cholesky factor L of AH MAT. These numbers are the
same as in [And96b], except for small variations in sparsity due to improve-
ments in the implementation. The iteration count is denoted by “iter” and
“cpu” is the CPU time in seconds. The heading “||z;|| = 0” indicates the
number of norms in the dual objective that are zero at the optimal solu-
tion. More precisely, ||z;|| is interpreted as being zero if it is less than the
tolerance 107 1%. The heading “relgap” denotes the relative duality gap

[0 Izl — eTa|
P

In addition to being scaled this is a slightly different measure than the
complementarity defined in (26): if Az = 0 exactly we have

cde=ATy+2)z=2"2

Hence the difference is dominated by the primal infeasibility | Az|| indicated
in the last column.

N n m |A| |AH,A"| |L|

4 25 15 224 97 105
10 121 99 1760 1010 1785
50 2601 2499 48800 31010 171083

100 10201 9999 197600 127010 929515
300 90601 89999 1792800 1161010 13203975
400 160801 159999 3190400 2068010 31011299

N iter cpu |z =0 vrelgap | Az
4 7 0 0 2¢e—10 2e—14
10 8 1 2¢e —10 Te—15
50 9 65 2e —09 4e—13
100 10 354 le—09 9e—14
300 11 6709 le—09 2e—13
400 12 22139 2¢ —10 2e—13

SO O OO

Table 7: Problem and solution characteristics for sspN

The first set of problems is denoted sspN (simply supported plate with
a point load solved on an N x N grid). They all have the same structure,
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but vary in size, depending on the grid in the finite element analysis. In
this problem d = 3. This set of problems is characterized by having no zero
norms in the solution, i.e., they are, in fact, smooth optimization problems.
In [And96b] the constraints ||z;|| < 1 are satisfied within a tolerance of order
1079. These constraints are satisfied exactly in the primal-dual method.
Except for this improvement in accuracy, the primal-dual method shows no
significant difference, for these problems, compared to the primal barrier
method in [And96b]. There is a small reduction in the iteration count, but
not in the CPU time. This is clearly a consequence of the fact that these
problems are smooth.

For this problem, as well as for the other results reported below, there
is no significant difference in the final duality gap and primal infeasibility
achieved by the two algorithms. They are, in all cases, about 108 or less.

The second set of problems, denoted by [Nal3, arises in the plane strain
model in plasticity. Again N indicates the grid size. In these problems
d = 2. Characteristics and results are given in Table 8.

N n_ m |A] [AH,AT] L]

3 49 52 1390 1142 1207
12 625 640 21331 26406 57421
21 1849 1876 64762 84384 278691

30 3721 3760 131683 175086 726046
60 14641 14720 524403 713766 4337857
99 39601 39732 1425134 1957631 14693151
120 58081 58240 2092843 2881926 24202413

N iter cpu |z =0 vrelgap |Az||

3 14 1 12 5e—10 2e—12
12 19 34 179 2e—09 4e—12
21 24 200 958 4e—10 4e—12

30 24 461 2315 7e—09 3e—11
60 28 4710 11265 4e—09 1le—10
99 30 17937 33503 7e—09 9e—10
120 34 44144 50548 8e—09 4e—10

Table 8: Problem and solution characteristics for [Nal3

In this problem set, the number of zero norms varies from 25 percent
for N = 3, to 87 percent for N = 120. Compared with [And96b], there is
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a significant reduction in the number of iterations and in CPU time. If we
disregard the smallest case, N = 3, the iteration count for the primal-dual
method varies from 19 to 34; for the primal barrier method in [And96b]
the variation is from 33 to 176. The primal-dual algorithm also obtains
significantly more zero norms in the optimal solution. From our physical
understanding of the solution we believe this is correct. It is one of several
indications that the primal-dual method is more accurate than the primal
barrier method.

There is an important physical interpretation of the complementarity
condition (4) in the plasticity problems considered in this section: the vec-
tors z; represent the deformation (strain) tensor at discrete points in the
continuum while the x; represent the stresses. Thus, if there is any de-
formation at a point, then the stresses at that point are on their bounds
(have norm one) and their directions are determined by the complementar-
ity condition. With this interpretation the complementarity condition is the
so-called “flow rule” for the material.

In the third set of test problems, only a small part of the material under-
goes deformation; therefore a very large number of the norms are expected
to be zero in the optimal solution. As shown in Table 9, the number of zero
norms varies from 62 to 96 percent of the total number of terms. Compared
with [And96b] the iteration count is significantly reduced and increases very
slowly with the problem size. The CPU time is reduced by a factor 4 or
more, and we are able to solve larger instances of the problem.

N n m |A] |AH,AT| |L|
20 1681 1718 59054 76945 246012
40 6561 6636 234145 315504 1511239
60 14641 14754 525236 715653 4433304
80 25921 26072 932327 1277402 8645485
120 58081 58308 2094509 2885699 24240011

N iter cpu ||zi]|=0 vrelgap | Az
20 20 134 1224 9e¢—09 4e—11
40 32 1416 6156 6e—09 3e—11
60 32 4937 14181 T7e—09 be—11
80 32 12133 25359 8e—09 4e—11
120 29 36516 57127 7e—09 3e—11

Table 9: Problem and solution characteristics for [Na20
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The last class of test problems is taken from [AC98]. These are problems
of the form (D) with additional linear equality constraints:

n
min{z |zi||, such that ATy + 2, =¢;,i=1,...,n, and ETy = d} ,
i=1

(35)
where E € ™% and d € R, i.e. | is the number of linear constraints. In
[AC98], it is shown how the £; penalty function approach makes it possible
to transform the linearly constrained problem to the unconstrained form (D)
in Section 1, and the physical interpretation and setup of the test problems
are described. This class of problems is denoted clNV13.

N n m ! |A| |AH,AT| |L|

3 9 26 10 163 168 198
12 144 320 145 2818 2790 7402
30 900 1880 901 17848 17511 78128
60 3600 7360 3601 71698 70126 413267

99 9801 19866 9802 195523 191000 1859559
120 14400 29120 14401 287398 280656 2047512
201 40401 81338 40402 807013 787580 9919534
399 159201 319466 159202 3182023 3103949 30001436

N iter cpu |z =0 relgap | Az|| constr

3 11 0 1 1.6e—08 4.4e—09 1.0e —15
12 13 4 95 6.7¢e —09 2.1le—13 1l.le—13
30 16 31 651 4.0e —09 2.3e—13 3.4e—12

60 20 180 2878 7.4e—09 13e—13 7.8e—11
9 24 890 8234 1.2e¢ —08 1.0e —13 7.0e —13
120 25 1238 12311 1.2e —08 1.0e —11 2.0e —13
201 24 6179 35803 3.1e—08 1.0e —13 5.1le —13
399* 35 34776 146326 7.8e —14 2.0e —13 6.3e — 13

Table 10: Problem and solution characteristics for c1N13.

Characteristics and results for these constrained problems are seen in
Table 10. In addition to the number / of linear constraints, there is a new
column, “constr”, indicating the relative infeasibility of these constraints
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measured by the expression

|27y ]
a1

For the primal barrier method in [AC98], the number of iterations varies
from 30 (for N =3 and N = 12) to 201 (for N = 300). For the primal-dual
method the variation is from 11 (for N = 3) to 24 (for N = 201) and 35
(for N = 399). For the case N = 201 the CPU time is reduced from 36371
seconds in [AC98] to 6179 using the primal-dual method. However, we can
do even better: in the clIN13 problems there is one column that is relatively
dense, resulting in considerable fill-in during the factorization. Using the
technique described in [And96a] for handling dense columns these problems
can be solved more efficiently, making it possible to solve for larger values
of N. The asterisk in the table indicates that the result for N = 399 was
obtained by this method. Using the same technique, the case N = 201
required 4293 CPU seconds, and there were 6367553 nonzero elements in
the L factor.

We conclude that for nonsmooth problems the primal-dual method is sig-
nificantly more efficient than the primal barrier method applied in [And96b,
ACO98, AC98]. The number of iterations increases slowly with the size of
the problem. Finally, the primal-dual method appears to be less vulnerable
to ill-conditioning near the optimal solution.
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